Polynomials with and without Determinantal Representations

نویسنده

  • ANDREAS THOM
چکیده

The problem of writing real zero polynomials as determinants of linear matrix polynomials has recently attracted a lot of attention. Helton and Vinnikov [9] have proved that any real zero polynomial in two variables has a determinantal representation. Brändén [2] has shown that the result does not extend to arbitrary numbers of variables, disproving the generalized Lax conjecture. We provide a large class of surprisingly simple real zero polynomials that do not have a determinantal representation, improving upon Brändén’s result. We characterize polynomials of which some power has a determinantal representation, in terms of an algebra with involution having a finite dimensional representation. We use the characterization to prove that any quadratic real zero polynomial has a determinantal representation, after taking a high enough power. Taking powers is thereby really necessary in general. The representations emerge explicitly, and we characterize them up to unitary equivalence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Determinants and permanents of Hessenberg matrices and generalized Lucas polynomials

In this paper, we give some determinantal and permanental representations of generalized Lucas polynomials, which are a general form of generalized bivariate Lucas p-polynomials, ordinary Lucas and Perrin sequences etc., by using various Hessenberg matrices. In addition, we show that determinant and permanent of these Hessenberg matrices can be obtained by using combinations. Then we show, the ...

متن کامل

Determinantal Representations and the Hermite Matrix

We consider the problem of writing real polynomials as determinants of symmetric linear matrix polynomials. This problem of algebraic geometry, whose roots go back to the nineteenth century, has recently received new attention from the viewpoint of convex optimization. We relate the question to sums of squares decompositions of a certain Hermite matrix. If some power of a polynomial admits a de...

متن کامل

A Determinantal Formula for Supersymmetric Schur Polynomials

We derive a new formula for the supersymmetric Schur polynomial sλ(x/y). The origin of this formula goes back to representation theory of the Lie superalgebra gl(m/n). In particular, we show how a character formula due to Kac and Wakimoto can be applied to covariant representations, leading to a new expression for sλ(x/y). This new expression gives rise to a determinantal formula for sλ(x/y). I...

متن کامل

Symmetric Determinantal Representations in Characteristic 2

This paper studies Symmetric Determinantal Representations (SDR) in characteristic 2, that is the representation of a multivariate polynomial P by a symmetric matrix M such that P = det(M), and where each entry of M is either a constant or a variable. We first give some sufficient conditions for a polynomial to have an SDR. We then give a non-trivial necessary condition, which implies that some...

متن کامل

Generalized Bivariate Lucas p-Polynomials and Hessenberg Matrices

In this paper, we give some determinantal and permanental representations of generalized bivariate Lucas p-polynomials by using various Hessenberg matrices. The results that we obtained are important since generalized bivariate Lucas p-polynomials are general forms of, for example, bivariate Jacobsthal-Lucas, bivariate Pell-Lucas ppolynomials, Chebyshev polynomials of the first kind, Jacobsthal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010